Denture Fibromatosis Enhanced Cytokine Production and Collagen Synthesis of Gingival Fibroblasts from Patients with
نویسنده
چکیده
The mechanisms of denture-induced gingival hypertrophy remain to be explored. Since fibroblast proliferation and bone resorption characterize this disorder, the possible involvement of cytokines was investigated. Gingival fibroblasts were obtained from six patients with denture fibromatosis (Den-Fb) and six healthy persons (Nor-Fb). Cells were compared for proliferation, collagen synthesis, and cytokine production. Incorporation of [3H]thymidine (TdR) was increased in 3 Den-Fb and 3 Nor-Fb lines in the presence of interleukin-l-beta (IL-1p) (10 U/mL) and tumor necrosis factor-alpha (TNF-a) (from 10 to 100 U/mL). Proline incorporation in Den-Fb was higher than that in Nor-Fb, and the mean collagen synthesis level in Den-Fb was significantly higher than that in Nor-Fb. Although there was no difference between the up-regulation of protein synthesis in Den-Fb and Nor-Fb induced by IL-1P or TNF-a, the receptors for these cytokines were expressed at higher levels in cell lines which exhibited higher protein synthesis. Between Nor-Fb and Den-Fb, there was no difference in the generation of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-6 (IL-6). However, most DenFb produced more GM-CSF and IL-6 in the presence of TNFa. Enhancement of IL-6 generation by GM-CSF was also more prominent in Den-Fb. GM-CSF and IL-6 were synergistically generated after co-culture of the fibroblasts with gingival keratinocytes. GM-CSF and IL-6 generation of Den-Fb was markedly enhanced by co-culture of Den-Fb with peripheral blood mononuclear cells (PBMC), especially PBMC from patients. PBMC from patients generated more cytokines than did those from healthy subjects. These results indicate that cytokines generated in situ cooperatively by keratinocytes infiltrated mononuclear cells, and fibroblasts evoke upregulation of collagen synthesis by fibroblasts expressing cytokine receptors.
منابع مشابه
In vitro testing the potential of a novel chimeric IgG variant for inhibiting collagen fibrils formation in recurrent hereditary gingival fibromatosis: chimeric antibody in a gingival model.
Gingival fibromatosis is a progressive enlargement of the gingiva. It may hinder oral cavity hygiene and result in underlying bone loss. The long-term benefits of surgery cannot be predicted. On the other hand, alternative, efficient and non-invasive methods are not available at present. The aim of this study was to test the inhibitory effects of a chimeric IgG variant on collagen fibril format...
متن کاملOn the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth
INTRODUCTION Gingival overgrowth has been linked to multiple factors such as adverse drug effects, inflammation, neoplastic processes, and hereditary gingival fibromatosis. Drug-induced gingival overgrowth is a well-established adverse event. In early stages, this gingival enlargement is usually located in the area of the interdental papilla. Histologically, there is an increase in the differen...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...
متن کاملInhibition of Elastin and Collagen Networks Degradation in Human Skin By Gingival Fibroblast. in Vitro, Ex Vivo and in Vivo Studies
Skin aging shows an imbalance between synthesis and degradation of the extracellular matrix. The overproduction of degradative enzymes (MMPs) during the chronologyand photo-induced aging leads to a degradation of the elastic and collagen networks. In a model of collagen and elastin destruction, we showed that the gingival fibroblast was able to preserve these macromolecules by inhibiting the ov...
متن کامل